美獅貴賓官方網(wǎng)站學(xué)術(shù)報(bào)告
時(shí)間:2019年11月19日(周二)09:00-11:00
地點(diǎn):工業(yè)中心506室
報(bào)告一
報(bào)告題目:Period function of Hamiltonian systems with separable variables
報(bào)告人簡(jiǎn)介: 張祥,上海交通大學(xué)特聘教授(享受國(guó)務(wù)院特殊津貼,二級(jí)教授、博導(dǎo)),歐洲科學(xué)與藝術(shù)院院士。主要從事動(dòng)力系統(tǒng)的定性、分支和可積理論的研究。所得結(jié)果部分發(fā)表在《American J. Math. Transactions of Amer. Math. Soc.》, 《Communications Math. Phys.》, 《J. Functional Analysis》, 《J. Nonlinear Sciences》 和《 J. Differential Equations》等國(guó)際一流數(shù)學(xué)雜志上。多次應(yīng)邀在歐美舉行的動(dòng)力系統(tǒng)國(guó)際會(huì)議上做大會(huì)特邀報(bào)告。目前擔(dān)任中國(guó)數(shù)學(xué)會(huì)奇異攝動(dòng)專業(yè)委員會(huì)主任,中國(guó)數(shù)學(xué)會(huì)理事,以及國(guó)際SCI雜志《Qualitative Theory of Dynamical Systems》和《International J. Bifurcation and Chaos》的Associate編委等。
內(nèi)容摘要:In this talk we intrudoce our recent results on the period function of planar Hamiltonian differential systems with separable variables. The results are on sufficient conditions for monotonicity of the period function and uniqueness of critical periods, and also on the limit of the period function near the boundary of the period annulus of the center.
報(bào)告二
報(bào)告題目:Wolbachia infection model with free boundary
報(bào)告人簡(jiǎn)介: 郭志明,廣州大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院教授、博士生導(dǎo)師,第十一屆廣東省人大代表。2001年博士畢業(yè)于中山大學(xué)。多年來(lái)一直從事離散系統(tǒng)、泛函微分方程及生物數(shù)學(xué)模型的理論與應(yīng)用研究,在《Journal of Differential Equations》、《Journal of London Mathematical Society》、《Journal Dynamics and Differential Equations》、《Journal of Mathematical Biology》、《中國(guó)科學(xué)》等國(guó)際國(guó)內(nèi)重要刊物上發(fā)表論文60多篇,其中SCI收錄50多篇。先后主持國(guó)家自然科學(xué)基金3項(xiàng)、參加國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目1項(xiàng)。
內(nèi)容摘要:Scientists have been seeking ways for many years to use Wolbachia to eliminate the mosquitoes that spread human diseases. Could Wolbachia be the determining factor in controlling the mosquito-borne infectious diseases? To answer this question mathematically, we develop a reaction-diffusion model with free boundary in one-dimensional environment. We divide the female mosquito population into two groups: one is the uninfected mosquito population that grows in the whole region while the other is the mosquito population infected with Wolbachia that occupies a finite small region and invades the environment with a spreading front governed by a free boundary satisfying the well-known one-phase Stefan condition. For the resulting free boundary problem, we establish criteria for spreading and vanishing. Our results provide useful insights on designing feasible mosquito releasing strategy to invade the whole female mosquito population with Wolbachia infection and thus eventually eradicate the mosquito-borne diseases.
歡迎老師、同學(xué)們參加!
美獅貴賓官方網(wǎng)站
2019年11月12日