時間:2019年12月16日(周一)09:00-10:00
地點:工業(yè)中心506室
報告題目:Modelling and anslysis of non-Markovian intracellular reaction networks
報告人簡介: 周天壽,男,教授,數(shù)學研究所所長,廣東省計算數(shù)學重點實驗室副主任,中國工業(yè)與應用數(shù)學學會數(shù)學生命科學專業(yè)委員會副主任,中國運籌學會計算系統(tǒng)生物學專業(yè)委員會副主任。研究方向:計算系統(tǒng)生物學。在SCI刊物發(fā)表150余篇論文,包括國際頂尖刊物PNAS和PRL,其中發(fā)表在PRL上的論文被Harvard大學生物系M. Springer和J. Paulsson教授在Nature上作了專門評論。在科學出版社出版學術專著2部。曾獲全國優(yōu)秀博士學位論文獎和國家自然科學二等獎。主持4項國家自然科學基金委重點項目。
內(nèi)容摘要:Modeling and analysis of intracellular processes have long relied on the Markovian assumption. However, as soon as a reactant interacts with its environment, molecular memory definitely exists and its effects cannot be neglected. Since the Markov theory cannot translate directly to modeling and analysis of non-Markovian processes, this leads to many significant challenges. We develop a novel formulation, namely the stationary generalized chemical master equation, to model intracellular processes with molecular memory. This formulation converts a non-Markovian question to a Markovian one while keeping the stationary probabilistic behavior unchanged. Both a stationary generalized Fokker-Planck equation and a generalized linear noise approximation are further developed, each convenient for the fast evaluation of fluctuations. These formulations can have broad applications and may help us discovery new biological knowledge.
歡迎老師、同學們參加!
美獅貴賓官方網(wǎng)站
2019年12月13日