會議時(shí)間:2022年3月12日下午14:50 - 17:20
騰訊會議:484 280 730 會議密碼:220312
特邀專家(按姓氏字母排序):
丁時(shí)進(jìn) (華南師范大學(xué))
琚強(qiáng)昌 (北京應(yīng)用物理與計(jì)算數(shù)學(xué)研究所)
溫?zé)▓?(華南理工大學(xué))
姚 磊 (西北大學(xué))
原保全 (河南理工大學(xué))
朱長江 (華南理工大學(xué))
主辦單位:美獅貴賓官方網(wǎng)站
會議資助:國家自然科學(xué)基金、廣東技術(shù)師范大學(xué)科研啟動經(jīng)費(fèi)
組織委員會:溫?zé)▓?(華南理工大學(xué))
姚 磊 (西北大學(xué))
趙新花 (廣東技術(shù)師范大學(xué))
聯(lián)系人: 趙新花 (電子郵箱:xhzhao@gpnu.edu.cn )
會議議程
時(shí)間 |
內(nèi)容 |
主持人 |
14:50 – 15:00 |
院長致辭 |
梁海華 |
時(shí)間 |
報(bào)告人 |
主持人 |
15:00 – 15:40 |
原保全 |
朱長江 |
15:40 – 15:50 |
休息 |
15:50 – 16:30 |
琚強(qiáng)昌 |
丁時(shí)進(jìn) |
16:30 – 17:10 |
姚磊 |
溫?zé)▓?/p> |
報(bào)告題目和摘要
Global well-posedness of the Incompressible inhomogeneous generalized MHD Equations
原保全 (河南理工大學(xué))
摘要: In this talk I will talk the Cauchy problem of the multi-dimensional incompressible inhomogeneous generalized magnetohydrodynamic equations with fractional dissipation. It is shown that when $\alpha+\beta=1+\frac{n}{2}$ satisfying $1\le \beta\le \alpha\le\min \{\frac{3\beta}{2},\frac{n}{2},1+\frac{n}{4}\}$ and $\frac{n}{4}<\alpha$ for $n\geq2$, then the incompressible inhomogeneous MHD equations has a unique global strong solution for the initial data in some Sobolev spaces. The global strong solutions to the 2D incompressible inhomogeneous magnetohydrodynamic equations with partial diffusion will be discussed.
A Singular limit of shallow water dynamics with fast variable coefficients
琚強(qiáng)昌 (北京應(yīng)用物理與計(jì)算數(shù)學(xué)研究所)
摘要: For flows in the equatorial zone, one has to take into account the variations of the Coriolis force since the Coriolis force totally degenerates at the equator. This makes the problem more intricate as one is faced with a singular limit problem with variable coefficient. We study the singular limit of the equatorial shallow-water system which describes the motion of the atmosphere/ocean in the equatorial zone. Based on the convergence result of Durtrifoy, Majda and Schochet [Comm. Pure Appl. Math(2009)], we further obtain the convergence rate estimates of the solutions. This is a recent joint work with Prof. Jiang, Song and Prof. Xu, Xin.
Hydrodynamic limit for inhomogeneous incompressible Navier-Stokes-Vlasov-Fokker-Planck/Navier-Stokes-Vlasov equations
姚磊 (西北大學(xué))
摘要: We study the hydrodynamic limit of the weak solutions to inhomogeneous incompressible Navier-Stokes-Vlasov-Fokker-Planck equations in a two or three dimensional bounded domain. The proof relies on the relative entropy argument to obtain the strong convergences of the macroscopic density of the particles and fluid velocity, which extends the works of Goudon-Jabin-Vasseur[Indiana Univ. Math. J., 53(2004)] and Mellet-Vasseur [Comm. Math. Phys.,281(2008)] to inhomogeneous incompressible Navier-Stokes-Vlasov-Fokker-Planck equations. At last, we give a recent progress about the hydrodynamic limit of the weak solutions to inhomogeneous incompressible Navier-Stokes-Vlasov equations in three dimensional periodic domain, under the assumption that the initial data is small in some sense and the initial density is bounded away from zero.
歡迎感興趣的老師和同學(xué)參加!