報告題目:Traveling waves in a diffusive epidemic model with criss-cross mechanism
報告時間:2022年10月25日(星期二),16:30-17:30
報告地點:廣東技術(shù)師范大學(xué)東校區(qū)工業(yè)中心605室
內(nèi)容摘要:In this talk, we consider a reaction-diffusion system to describe the spread of infectious diseases within two population groups by self and criss-cross infection mechanism. Firstly, based on the eigenvalues, we give two methods for the calculation of the critical wave speed $c^*$. Secondly, by constructing a pair of upper-lower solutions and using the schauder's fixed-point theorem, we prove that the system admits positive traveling wave solutions, which connect the initialdisease-free equilibrium $(u_1^0, 0,u_3^0,0)$ at $t=-\infty$, but the traveling waves need not connect the final disease-free equilibrium $(u_1^*,0,u_3^*,0)$ at $t=+\infty$. Hence, we study the asymptotic behaviors of the traveling wave solutions to show that the traveling wave solutions converge to $(u_1^*,0,u_3^*,0)$ at $t=+\infty$. Finally, by the two-sided Laplace transform, we establish the non-existence of traveling waves for the model. The approach in this paper provides an effective method to deal with the existence of traveling wave solutions for the non-monotone reaction-diffusion systems consisting of four equations.
報告人簡介:徐志庭,華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院教授,博士研究生導(dǎo)師。研究方向為微分方程與動力系統(tǒng)。在J. Math. Pures. Appl.,Nonlinear Analysis: TMA.,Nonlinear Analysis: RWA.,IMA. J. Appl. Math.,J. Math. Anal. Anal.,Discrete Contin Dyn Sys. B等國際期刊上發(fā)表論文80余篇。已培養(yǎng)碩士研究生40余名,2007年獲廣東省自然科學(xué)進步獎(排名第三)。
歡迎感興趣的老師和同學(xué)參加!
美獅貴賓官方網(wǎng)站