報(bào)告題目: Propagation phenomenon in a diffusion system with the Belousov-Zhabotinskii chemical reaction
報(bào)告時(shí)間: 2023年5月16日(星期二), 20:20-21:10
報(bào)告地點(diǎn): 騰訊會(huì)議 856 450 906
內(nèi)容摘要: This talk is concerned with propagation phenomena in a diffusion system with the Belousov-Zhabotinskii chemical reaction in high-dimentional space. We first show that he system admits V-shaped traveling fronts in $\R^2$. Then using the V-shaped traveling fronts, we show that there exists a new type of entire solution originated from three moving planar traveling fronts, and evolved to a V-shaped traveling front as time changes. Finally, we show that all the transition fronts of the system in $\R^N$ share the same global mean speed by constructing suitable radially symmetric expanding and retracting sub-super solutions.
報(bào)告人簡介: 王智誠,蘭州大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院教授,博士生導(dǎo)師。1994年本科畢業(yè)于西北師范大學(xué),2007年在蘭州大學(xué)獲理學(xué)博士學(xué)位。主要成果發(fā)表在Trans. AMS、Arch. Rational Mech. Anal.、SIAM J. Math. Anal.、SIAM J. Appl. Math.、JMPA、Calc. Var. PDE、JDE、Nonlinearity等雜志上。2010年入選教育部新世紀(jì)優(yōu)秀人才支持計(jì)劃,2011和2019年分別獲得甘肅省自然科學(xué)二等獎(jiǎng),2016年入選甘肅省飛天學(xué)者特聘教授,主持或參加完成多項(xiàng)國家自然科學(xué)基金面上項(xiàng)目和重點(diǎn)項(xiàng)目,正在主持一項(xiàng)甘肅省基礎(chǔ)研究創(chuàng)新群體項(xiàng)目和一項(xiàng)國家自然科學(xué)基金面上項(xiàng)目。目前擔(dān)任International J. Bifurc. Chaos 等雜志的編委(Associate editor)。
歡迎感興趣的老師和同學(xué)參加!
美獅貴賓官方網(wǎng)站